Rainbow Connection of Sparse Random Graphs

نویسندگان

  • Alan M. Frieze
  • Charalampos E. Tsourakakis
چکیده

An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this work we study the rainbow connectivity of binomial random graphs at the connectivity threshold p = log n+ω n where ω = ω(n) → ∞ and ω = o(log n) and of random r-regular graphs where r ≥ 3 is a fixed integer. Specifically, we prove that the rainbow connectivity rc(G) of G = G(n, p) satisfies rc(G) ∼ max {Z1, diameter(G)} with high probability (whp). Here Z1 is the number of vertices in G whose degree equals 1 and the diameter of G is asymptotically equal to logn log log n whp. Finally, we prove that the rainbow connectivity rc(G) of the random r-regular graph G = G(n, r) whp satisfies rc(G) = O(logr n) where θr = log(r−1) log(r−2) when r ≥ 4 and rc(G) = O(log n) whp when r = 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Rainbow Connection of Random Regular Graphs

We prove that a random 3-regular graph has rainbow connection number O(log n). This completes the remaining open case from Rainbow connection of random regular graphs, by Dudek, Frieze and Tsourakakis.

متن کامل

Rainbow Connectivity of Sparse Random Graphs

An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this work we study the rainbow connectivity of binomial random graphs at the connectivity threshold p = logn+ω n...

متن کامل

Rainbow Connection of Random Regular Graphs

An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this work we study the rainbow connection of the random r-regular graph G = G(n, r) of order n, where r ≥ 4 is a c...

متن کامل

Rainbow k-connection in Dense Graphs

An edge-coloured path is rainbow if the colours of its edges are distinct. For a positive integer k, an edge-colouring of a graph G is rainbow k-connected if any two vertices of G are connected by k internally vertex-disjoint rainbow paths. The rainbow k-connection number rck(G) is defined to be the minimum integer t such that there exists an edge-colouring of G with t colours which is rainbow ...

متن کامل

Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

A path in an edge-colored graph G is rainbow if no two edges of it are colored the same. The graph G is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph G is strongly rainbow-connected. The minimum number of colors needed to make G rainbow-connected is known as the rainbow connection number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012